Showing posts with label Brazil. Show all posts
Showing posts with label Brazil. Show all posts

Wednesday, 28 February 2018

Rainforest regeneration rescues bat communities in aftermath of fragmentation


Rainforest loss is fuelling a tsunami of tropical species extinctions. However, not all is doom and gloom. A new study, conducted in the Brazilian Amazon, suggests that ecological cataclysms prompted by the fragmentation of the forest can be reverted by the regeneration of secondary forests, offering a beacon of hope for tropical forest biodiversity across the world.

Rainforest regeneration rescues bat communities in aftermath of fragmentation
Credit: Mark Moffett/ Minden Pictures/National Geographic Stock
The international team of researchers found that species strongly associated with primary forest were heavily depleted after 15 years of man-made disruption including the burning and clearing of forest stands,

However, 30 years down the line, and with the regeneration of secondary regrowth, many of the species that had abandoned the area had made a comeback.

"If you compare the time periods, it is apparent that taking a long-term view is paramount to uncovering the complexity of biodiversity in human-modified landscapes," said senior researcher Dr. Christoph Meyer, lecturer in global ecology and conservation at the University of Salford.

The study, published in Nature: Scientific Reports, measured the impacts of forest break-up of 50 species of bat (approx. 6,000 animals).

Bats comprise roughly one fifth of all mammal species and display wide variation in foraging behaviour and habitat use, making them an excellent model group for the research.

"The responses exhibited by bats offer important insights into the responses of other taxonomic groups." says Ricardo Rocha, lead author of the study from the University of Lisbon.

"The recovery that we have documented mirrors the patterns observed for beetle and bird communities within the Amazon.

"These parallel trends reinforce the idea that the benefits of forest regeneration are widespread, and suggest that habitat restoration can ameliorate some of the harm inflicted by humans on tropical wildlife", he adds.

The results of the current study contrast with the catastrophic faunal declines observed during a similar time window in rodent communities in the 'forest islands' of the Chiew Larn reservoir in Thailand.

"The recovery observed at the Amazon was mostly due to the recolonization of previously deforested areas and forest fragments by old-growth specialist bats. This recolonization is likely attributable to an increased diversity and abundance of food resources in areas now occupied by secondary forest, fulfilling the energetic requirements of a larger set of species", explains Rocha.

However, the short-term nature of most studies has substantially impaired the capacity of researchers to properly capture the intricate time-related complexities associated with the effects of forest fragmentation on wildlife.

Source: University of Salford [February 28, 2018]

Read more

Friday, 23 February 2018

Playing both ends: Amphibian adapted to varied evolutionary pressures


Caecilians are serpent-like creatures, but they're not snakes or giant worms. The limbless amphibians, related to frogs and salamanders, favor tropical climates of Africa, Asia and the Americas. Most live in burrows of their own making; some are aquatic.

Playing both ends: Amphibian adapted to varied evolutionary pressures
A limbless amphibian, known as Caecilian, Siphonops annulatus, widely distributed in Brazil. Scientists from Utah State
University in the United States and Brazil’s Butantan Institute report skin gland concentrations adapted
to different evolutionary pressures in the head and posterior regions of the amphibian
[Credit: Carlos Jared, Butantan Institute]
With colleagues from Brazil, Utah State University ecologist Edmund "Butch" Brodie, Jr. reports caecilians feature greatly enlarged poison glands at each end of their bodies, which appear to have evolved from different selective pressures - the ability to tunnel into the ground and to defend oneself from predators.

Brodie, along with Carlos Jared, Pedro Luiz Mailho-Fontana, Rafael Marques-Porto, Juliana Mozer Sciani, Daniel Carvalho Pimenta, and Marta Maria Antoniazzi of São Paulo's Butantan Institute, published the findings in Scientific Reports.

The team's research, supported by the Brazilian National Council for Scientific and Technological Development, focuses on Siphonops annulatus, a caecilian species found throughout Brazil.

"My Brazilian colleagues noticed the burrows made by this species were lined with a shiny, slick substance," says Brodie, professor in USU's Department of Biology and the USU Ecology Center. "We didn't think it was a secretion from the poison glands, so we decided to investigate."

The Brazilian caecilian, grayish in color and measuring about 18 inches in length, is a surprisingly rapid burrower, he says.

Playing both ends: Amphibian adapted to varied evolutionary pressures
Magnified image of connective tissue matrix forming honeycomb structure surrounding glands on the head of Caecilian,
Siphonops annulatus. Scientists from Utah State University in the United States and Brazil’s Butantan Institute report skin
gland concentrations adapted to different evolutionary pressures in the head and posterior regions of the amphibian
[Credit: Carlos Jared, Butantan Institute]
"When caecilians burrow, they force their snouts into the ground and essentially dive into the soil," Brodie says.

As suspected, the team discovered all the skin glands in the serpentine creatures' head region were greatly enlarged, tightly packed mucous glands - not poison ones. The slippery lubrication enables the caecilians' rapid, subterranean escape from predators, especially coral snakes.

"We know of no other amphibian with this high concentration of mucous glands," Brodie says. "In other terrestrial amphibians, mucous is mainly related to the uptake of oxygen. Here, in caecilians, it's obviously used in locomotion."

Examination of the caecilians revealed further information. The mucous glands extend throughout the amphibians' body, in gradually reduced concentration, and give way to poison glands concentrated in the tail.

"The poison glands, resulting from a different selective pressure, provide another defense from predators," Brodie says. "In addition to chemical defense, the tail acts as a 'plug,' blocking the tunnel and further deterring predators."

The eccentric amphibian, Brodie and colleagues write, is "really a box of surprises."

Author: Mary-Ann Muffoletto | Source: Utah State University [February 23, 2018]

Read more

Thursday, 15 February 2018

Hunting is changing forests, but not as expected


When it comes to spreading their seeds, many trees in the rainforest rely on animals, clinging to their fur or hitching a ride within their digestive tract. As the seeds are spread around, the plants' prospects for survival and germination are increased.

Hunting is changing forests, but not as expected
Researchers from UConn and the San Diego Zoo Institute for Conservation and Research examined how the overhunting
of seed dispersing animals is changing tree communities in Western Amazonia, such as those in Manu National Park
[Credit: Varun Swamy]
But in many tropical forests, over-hunting is diminishing the populations of those animals, and, as a result, changing the make-up of the forests themselves.

A new study of the Amazon rainforest by researchers at UConn and the San Diego Zoo Institute for Conservation and Research, published in the Journal of Ecology, examines what happens to plants if their seed dispersers are no longer present. They found that theoretical models predicting a dire impact on plant communities and huge decreases in the amount of carbon stored in tropical forests are not supported by the facts. Instead, the effects on the ecosystem are less straightforward and less immediately devastating.

"Yes, there is a negative effect, but there isn't 100 percent mortality," says Robert Bagchi, assistant professor of ecology and evolutionary biology at UConn. "The story is more complex and much more subtle."

Whereas the models used in the previous studies did not use actual data on items such as mortality, survival, growth, and spatial distribution, Bagchi and his fellow researchers explored the question in greater detail, using a statistical technique they recently developed with extensive data collected on tree communities in the 80,000 km2 Madre de Dios river basin, located in the southeastern corner of Peru's Amazon rainforest.

In Western Amazonia, as many as two-thirds of all tree species rely on native, fruit-eating mammals such as spider monkeys and tapirs, or birds like guans, trumpeters and toucans, who are able to travel fairly large distances and carry any ingested seeds far from their parent trees.

Dispersal is advantageous for seeds because spreading out will give seedlings an edge over specialized natural predators who might otherwise wipe out aggregations of undispersed plants.

"The idea is that the seeds escape," says Bagchi. "A lot of pathogens and insects are quite specific about which plants they will eat, and if there is no dispersal and their desired plants are densely aggregated, those plants will be clobbered."

Hunting is changing forests, but not as expected
In tropical rain forests, as many as two-thirds of all tree species rely on native, fruit-eating mammals such as capuchin
monkeys who are able to travel fairly large distances and carry any ingested seeds far from their parent trees.
What happens to the forests when these seed dispersing animals are over hunted? [Credit: Varun Swamy]
In addition, the tree species dispersed by these animals also store the most carbon.

Unfortunately, the large-bodied animals and birds are the favorite quarry of hunters for bush meat.

The researchers examined tree communities in the tropical rain forests of Western Amazonia, in terms of forest spatial organization and carbon storage capacity. They did find that tree communities in hunted forests appear to be undergoing a reorganization, where saplings of species that rely on large hunted animals for dispersal are now growing closer to each other and forming denser clumps in hunted forests.

But the long-term implications for biodiversity and the biomass of forests are not yet clear. And the expectation that without their dispersers, seeds of these plant species will land in the "kill zone" of insects and diseases under their parents and be replaced by other species that store less carbon, culminating in huge decreases in the amount of carbon stored in tropical forests, has not materialized.

A number of factors could be contributing to the reason that previous theories are not proving true, Bagchi says.

Smaller seed dispersers that often increase when their larger competitors are hunted out may be compensating. Additionally, the trees analyzed in the study were already at least 10-15 years old, so follow-up studies will instead focus on the early lives of these trees, starting at the germination stage.

Questions the researchers hope to pursue include, What are the survival rates of undispersed seeds in hunted forests? Is limited dispersal by smaller animals enough to ensure a seed's survival? How do these stages fit together -- does high survival at a later stage compensate for low survival of undispersed seeds?

"We can't simplify the process to just a linear one," says Bagchi. "We need data following the whole process, from seed dispersal to trees growing into adults."

Bagchi also cautions that although these findings are somewhat hopeful in light of previous modeling studies, tropical forests in South America, Asia, and Africa are becoming ever more stripped of their diversity of flora and fauna, fundamentally changing the structure of these complex systems.

Source: University of Connecticut [February 15, 2018]

Read more

Wednesday, 14 February 2018

A theory of physics explains the fragmentation of tropical forests


Tropical forests around the world play a key role in the global carbon cycle and harbour more than half of the species worldwide. However, increases in land use during the past decades caused unprecedented losses of tropical forest. Scientists at the Helmholtz Centre for Environmental Research (UFZ) have adapted a method from physics to mathematically describe the fragmentation of tropical forests. In the scientific journal Nature, they explain how this allows to model and understand the fragmentation of forests on a global scale. They found that forest fragmentation in all three continents is close to a critical point beyond which fragment number will strongly increase. This will have severe consequences for biodiversity and carbon storage.

A theory of physics explains the fragmentation of tropical forests
The aerial photo shows forest fragments of the Brazilian Atlantic rainforest in Northeastern Brazil (Mata Atlantica),
surrounded by sugar cane plantations [Credit: Mateus Dantas de Paula]
In order to analyse global patterns of forest fragmentation, a UFZ research group led by Prof. Andreas Huth used remote sensing data that quantify forest cover in the tropics in an extremely high resolution of 30 meters, resulting in more than 130 million forest fragments. To their surprise they found that the fragment sizes followed on all three continents similar frequency distributions. For example, the number of forest fragments smaller than 10,000 hectares is rather similar in all three regions: 11.2 percent in Central and South America, 9.9 percent in Africa and 9.2 percent in Southeast Asia. "This is surprising because land use noticeably differs from continent to continent," says Dr. Franziska Taubert, mathematician in Huth's team and first author of the study. For instance, very large forest areas are transformed into agricultural land in the Amazon region. By contrast, in the forests of Southeast Asia, often economically attractive tree species are taken from the forest.

When searching for explanations for the identical fragmentation patterns, the UFZ modellers found their answer in physics. "The fragment size distribution follows a power law with almost identical exponents on all three continents," says biophysicist Andreas Huth. Such power laws are known from other natural phenomena such as forest fires, landslides and earthquakes. The breakthrough of their study is the ability to derive the observed power laws from percolation theory. "This theory states that in a certain phase of deforestation the forest landscape exhibits fractal, self-similar structures, i.e. structures that can be found again and again on different levels," explains Huth. "In physics, this is also referred to as the critical point or phase transition, which for example also occurs during the transition of water from a liquid to gaseous state," added co-author Dr. Thorsten Wiegand from UFZ. A particularly fascinating aspect of the percolation theory is that this universal size distribution is, at the critical point, independent of the small-scale mechanisms that led to fragmentation. This explains why all three continents show similar large-scale fragmentation patterns.

The UFZ team compared the remote sensing data of the three topical regions with several predictions of percolation theory. In support of their hypothesis they found agreement not only for the fragment size distribution, but also for two other important indicators - the fractal dimension and the length distribution of fragment edges. "This physical theory allows us to describe deforestation processes in the tropics," concludes Dr. Rico Fischer, co-author of the study. And that's not all: this approach can also be used to predict how fragmentation of tropical forests will advance over the next decades. "Particularly near the critical point, dramatic effects are to be expected even in the case of relatively minor deforestation," adds Taubert.

Using scenarios that assume different clearing and reforestation rates, the scientists modelled how many forest fragments can be expected by 2050. For example, if deforestation continues in the Central and South American tropics at the current rate, the number of fragments will increase 33-fold and their mean size will decrease from 17 ha to 0.25 ha. The fragmentation trend can only be stopped by slowing down deforestation and reforesting more areas than deforesting, which currently is a rather unlikely option. Future satellite missions, such as Tandem-L, are of great importance for the timely and reliable detection of these trends.

Advanced fragmentation of tropical forests will have severe consequences for biodiversity and carbon storage. On the one hand, biodiversity suffers because numerous rare animal species depend on large forest patches. For example, the jaguar needs around 10,000 hectares of contiguous forest to survive. On the other hand, the increasing fragmentation of forests also has a negative impact on climate. A UFZ team of scientists led by Andreas Huth described in Nature Communications in spring of last year that fragmentation of once connected tropical forest areas could increase carbon emissions worldwide by another third, as many trees die and less carbon dioxide is stored in the edge of forest fragments.

Source: Helmholtz-Centre for Environmental Research - UfZ [February 14, 2018]

Read more