Showing posts with label Earth Science. Show all posts
Showing posts with label Earth Science. Show all posts

Wednesday, 28 February 2018

Modern volcanism tied to events occurring soon after Earth's birth


Plumes of hot magma from the volcanic hotspot that formed Réunion Island in the Indian Ocean rise from an unusually primitive source deep beneath Earth's surface, according to new work in Nature from Carnegie's Bradley Peters, Richard Carlson, and Mary Horan along with James Day of the Scripps Institution of Oceanography.

Modern volcanism tied to events occurring soon after Earth's birth
A fieldwork photo from Réunion Island shows the flank of the Cirque de Cilaos,
looking out towards the Indian Ocean [Credit: Bradley Peters]
Réunion marks the present-day location of the hotspot that 66 million years ago erupted the Deccan Traps flood basalts, which cover most of India and may have contributed to the extinction of the dinosaurs. Flood basalts and other hotspot lavas are thought to originate from different portions of Earth's deep interior than most volcanoes at Earth's surface and studying this material may help scientists understand our home planet's evolution.

The heat from Earth's formation process caused extensive melting of the planet, leading Earth to separate into two layers when the denser iron metal sank inward toward the center, creating the core and leaving the silicate-rich mantle floating above.

Over the subsequent 4.5 billion years of Earth's evolution, deep portions of the mantle would rise upwards, melt, and then separate once again by density, creating Earth's crust and changing the chemical composition of Earth's interior in the process. As crust sinks back into Earth's interior -- a phenomenon that's occurring today along the boundary of the Pacific Ocean -- the slow motion of Earth's mantle works to stir these materials, along with their distinct chemistry, back into the deep Earth.

Modern volcanism tied to events occurring soon after Earth's birth
Sunrise over the summit of Piton des Neiges, the extinct volcano on the Indian Ocean's Réunion Island
[Credit: Bradley Peters]
But not all of the mantle is as well-blended as this process would indicate. Some older patches still exist -- like powdery pockets in a poorly mixed bowl of cake batter. Analysis of the chemical compositions of Réunion Island volcanic rocks indicate that their source material is different from other, better-mixed parts of the modern mantle.

Using new isotope data, the research team revealed that Réunion lavas originate from regions of the mantle that were isolated from the broader, well-blended mantle. These isolated pockets were formed within the first ten percent of Earth's history.

Isotopes are elements that have the same number of protons, but a different number of neutrons. Sometimes, the number of neutrons present in the nucleus make an isotope unstable; to gain stability, the isotope will release energetic particles in the process of radioactive decay. This process alters its number of protons and neutrons and transforms it into a different element. This new study harnesses this process to provide a fingerprint for the age and history of distinct mantle pockets.

Modern volcanism tied to events occurring soon after Earth's birth
Looking into down into a volcanic crater of Piton de la Fournaise on Réunion Island
with dormant volcanic cones in the background [Credit: Bradley Peters]
Samarium-146 is one such unstable, or radioactive, isotope with a half-life of only 103 million years. It decays to the isotope neodymium-142. Although samarium-146 was present when Earth formed, it became extinct very early in Earth's infancy, meaning neodymium-142 provides a good record of Earth's earliest history, but no record of Earth from the period after all the samarium-146 transformed into neodymium-142. Differences in the abundances of neodymium-142 in comparison to other isotopes of neodymium could only have been generated by changes in the chemical composition of the mantle that occurred in the first 500 million years of Earth's 4.5 billion-year history.

The ratio of neodymium-142 to neodymium-144 in Réunion volcanic rocks, together with the results of lab-based mimicry and modeling studies, indicate that despite billions of years of mantle mixing, Réunion plume magma likely originates from a preserved pocket of the mantle that experienced a compositional change caused by large-scale melting of Earth's earliest mantle.

The team's findings could also help explain the origin of dense regions right at the boundary of the core and mantle called large low shear velocity provinces (LLSVPs) and ultralow velocity zones (ULVZs), reflecting the unusually slow speed of seismic waves as they travel through these regions of the deep mantle. Such regions may be relics of early melting events.

"The mantle differentiation event preserved in these hotspot plumes can both teach us about early Earth geochemical processes and explain the mysterious seismic signatures created by these dense deep-mantle zones," said lead author Peters.

Source: Carnegie Institution for Science [February 28, 2018]

Read more

Tuesday, 27 February 2018

Geologists solve fossil mystery by creating 3-D 'virtual tour' through rock


Have you ever wished you could travel inside a rock? It may sound more like magic than science, but Princeton scientists have found a way to make it (almost) true.

Geologists solve fossil mystery by creating 3-D 'virtual tour' through rock
With an industrial grinder, a super-high-resolution camera usually used for wedding photography, and high-speed neural
networks, Princeton geoscientists Adam Maloof and Akshay Mehra can deconstruct rock samples and create three-
dimensional digital versions, which they have used to analyze specimens of Cloudina fossils gathered by Mehra (left)
and undergraduates Will Van Cleve and Christian Gray (right) of the Class of 2017 from the Byng Formation,
a fossil reef formation in a glacier-carved valley on Salient Mountain in the Canadian Rockies
[Credit: Adam Maloof and Akshay Mehra, Princeton University Department of Geosciences]
With an industrial grinder and a super-high-resolution camera, Princeton geoscientists Adam Maloof and Akshay Mehra can deconstruct rock samples and create three-dimensional digital versions that scientists can look at from any angle. In addition, they have developed software that allows the computer to segment images and isolate objects without human bias.

Using this technology in conjunction with detailed field observations, they examined a thin-shelled creature that lived over much of the world about 545 million years ago, Cloudina, generally agreed to be the first-ever "biomineralizer," an organism that can create a shell or bones in addition to soft tissue.

While previous researchers had argued that Cloudina were reef builders, Maloof and Mehra were able to use their 3-D reconstruction of the creatures' delicate tube-like structures to conclude that the fossils had been transported from other areas, suggesting that Cloudina played only a minor role in the earliest reef systems. Their work appears in the current issue of the Proceedings of the National Academy of Sciences.

"I thought going in we would learn all sorts about this amazing first biomineralizer and first reef builder, but Cloudina turned out to be more like a reef dweller," said Maloof, an associate professor of geosciences. He has now turned his focus to the next-oldest potential reef builder, a sponge called Archaeocyathid that lived about 520 million years ago.

Cloudina had proven resistant to detailed study because its delicate casing is too fragile to extract physically from the surrounding limestone, and it could not be imaged remotely with traditional X-ray tomography techniques, which require density differences between the object of interest and the surrounding material. Because Cloudina is chemically identical to limestone, the fossils were effectively invisible to X-rays.

Meet GIRI

Almost five years ago, Maloof a nd Situ Studio collaborator Brad Samuels assembled the technology to create what he now calls "flipbooks," digital renderings that move through more than a thousand wafer-thin slices through a rock. Known as "GIRI" or "the grinder," the Princeton Grinding Imaging and Reconstruction Instrument is an answer to geologists' long-standing desire to know what rocks look like on the inside.

Geologists solve fossil mystery by creating 3-D 'virtual tour' through rock
Princeton University geoscientist Adam Maloof has spent five years perfecting a combination grinder and imaging system
that can create a three-dimensional 'virtual tour' through the inside of any solid object, from rocks to batteries. Here,
a diamond wheel grinds a sample in the Princeton Grinding Imaging and Reconstruction Instrument (GIRI) in the
Grinder Lab behind Guyot Hall, Princeton University [Credit: Adam Maloof and Akshay Mehra,
Princeton University Department of Geosciences]
"Forever -- since Darwin -- people have tried to figure out how fossils look in 3-D, when they're embedded in rock and it's hard to get them out," Maloof said. "People did serial sections just like this way back then -- but perhaps not at this scale -- where they would grind away a little rock, draw it, grind a little more, draw it. ... It can be incredibly time-consuming."

Enter GIRI, which can cut slices as thin as a few microns (less than 1 percent of a millimeter) and can run 24 hours a day for weeks on end. As each slice takes about 90 seconds to cut and image, researchers have to choose between speed and scale. Most of the specimens Maloof and Mehra have imaged are cut into 30-micron slices, about a third the thickness of a human hair. A typical inch-thick, 1,500-slice sample takes about a day and a half to grind and image; during this time, the operator needs to replace machine fluids and clean the wipers (which clear the surface after each cut) only once.

"The process is destructive," Maloof said. "Dinosaur bones, lunar samples -- there are certain specimens that people are less likely to give us. It hasn't really stopped us, because most samples are not precious. Cloudina, there are zillions of them -- we could never grind them all."

GIRI can produce a 3-D rendering of any solid object, whether or not it has the density differences needed for effective X-ray computed microtomography (usually known as X-ray CT or Micro CT). In addition, because you're taking a super-high-resolution photograph with every slice, you're always seeing the rock itself, not just the density model that remote sensing can provide.

"It's destructive of course, that's the disadvantage, but what's so nice is that you get to see photographs and make direct observations," Maloof. "That's what's been so life-changing to me: I love that it's not a model. You can just see it. On any given slice, if you find something great, you can just find the slice and say, 'What did it look like?' ...We're on a virtual tour inside, rather than looking at waveforms and trying to interpret them."